Water Research Center

Watershed Assessment, Education,
Training, and Lake/Pond Monitoring


by:
Mr. Brian Oram, PG
B.F. Environmental Consultants Inc.

General Guidelines and Standards for Surfacewater , Lake, Pond, Stream, Groundwater and
Watershed Monitoring Programs

General Guidance for Educational and Applied Research


Stream Flow and Real-Time
Water Quality Monitoring 
QC/QA Programs

Stream Assessments, Biological Monitoring,
Remote Data Logging


T
Mr. Brian Oram is a licensed professional geologist and soil scientist with over 20 years experience in applied earth and environmental sciences.  Mr. Oram has conducted research and consulting projects related to acid mine drainage ( AMD ), mine drainage, lake and stream monitoring programs, wetland creation and monitoring, filtration plant performance evaluations, testing new point of use water treatment devices and systems, hydrogeological evaluations, geological investigations, soils testing, soil morphological evaluations, water well drilling and construction, drinking water testing, mail order water testing kit program, and land reclamation. Mr. Oram has also been involved with Citizen Monitoring and other Environmental Training Programs for groups within the United States, Europe, and even the former Soviet Union.


Surfacewater Monitoring

Temperature 15 to 25 C
Dissolved Oxygen 4 mg/L or more desirable

Some Guidelines
Aquatic life

Warm water fish               5.0 mg/L
Cold water fish                 6.0
Spawning season             7.0
Estuarine biota                 5.0

Recreation

Primary Contact                     3.0
Secondary Contact                3.0
      

 

pH 5.0 to 9.0 tolerance most fish;
6.5 to 8.2 best fishing waters
Total Hardness
mg CaCO3/L
0 - 60 Soft Water
61 -120 Mod. Hard Water
121 - 180 Hard Water
181+ Very hard Water
Nitrate (NO 3)
mg as N/L
< 0.1 mg/L Unpolluted Water
Ammonia (NH3)
mg as N/L
0.1 mg/L and up Domestic or Agricultural Waste
0.06 mg/L - Can cause gill damage
0.2 to 0.3 mg/L Lethal to Trout
Phosphorous mg P/L Recommended Max. 0.1 mg/L
Chlorides (mg Cl/L) 170 mg/L or less best for fish
Fecal Coliform
(colonies/100 ml)
less than 20 colonies/100 ml desirable.
200/100 ml Max for direct contact recreational use.
1000/100 ml Max for indirect recreational use.
BOD (biochemical oxygen
demand - 5 day)
1 to 2 mg/L Very Clean
3 to 5 mg/L Mod. Clean
over 5 mg/L Serious Pollution

Note on Dissolved Oxygen:

Environmental Effects: The introduction of excess organic matter or soluble organic materials may result in a depletion of oxygen from an aquatic system through chemical or biological oxygen consumption or demand. Exposure to low dissolved oxygen levels (<5 - 6 mg/l ) may not directly kill an organism, but will increase its susceptibility to other environmental stresses. Exposure to < 30% saturation (<2 mg/l oxygen) for one to four days may kill most of the biota in a system. If oxygen-requiring organisms perish, the remaining organisms will be air-breathing insects and anaerobic (not requiring oxygen) bacteria.

Recreation: If all oxygen is depleted, aerobic decomposition ceases and organic decomposition or processing is accomplished through anaerobic reactions. Anaerobic microbes obtain energy from oxygen bound to other molecules such as sulfate compounds and can result in the mobilization of many otherwise insoluble compounds, such as Acid Mine Drainage. The breakdown of sulfate compounds will often impart a "rotten-egg" smell to the water, affecting its aesthetic value and preventing recreational use.

Warm Water Fish: Prefer water temperatures ranging between 18-29 degrees C (65-85 degrees F); includes fish such as smallmouth bass, largemouth bass, and bluegill. 

Cold Water Fish: Fish such as trout and salmon; preferred water temperature ranges between 7-18 degrees C (45-65 degrees F); coolwater fish, such as striped bass, northern pike, and walleye, have a range between that of coldwater and warmwater fish. 

Note on pH:

Environmental Effects: A reduction in pH (more acidic) may allow the release of toxic metals that would otherwise be sorbed to sediment can become liberated into overlying water.  Once mobilized, these metals are available for uptake by organisms and is related to the rate of biological activity and level of the pollutant in the environment.  Metal uptake can cause extreme physiological damage to aquatic life.  Aluminum concentrations of 0.1 - 0.3 mg/l will increase mortality, retard growth, gonadal development, and egg production of fish. Even if the aluminum availability is low, recent studies have shown that acidity alone may cause mortality in developing brook trout.

Acidification of the aquatic system can shift the biological community to one that is less desirable from a recreation and aesthetic uses, reduce decomposition rates and nutrient cycling, reduce the variety and distribution of the biological organisms that create a health ecosystem, and make other compounds like ammonia and trace metals per toxic..

More on Turbidity

Environmental Effects: Turbidity is not commonly used to evaluate surface water quality.  Turbidity is basically a measure of the amount of light intercepted by a given volume of water due to the presence of suspended and dissolved matter and microscopic biota. Increasing the turbidity of the water decreases the amount of light that penetrates the water column, which can then causes changes in the aquatic ecosystem. 

These changes could include result in a reduction in photosynthetic activity of phytoplankton, algae, and macrophytes, which would reduce the primary productivity of the system and may result in causing less favorable Cyanobacteria (blue-green algae) to become established.  Turbidity can also result in the reduce of dissolved oxygen, destroying the habitat of macroinvertebrates, and cause gill damage/abrasion.

Macro Invertebrates

Online Key to Help Determine the Health of a stream
On-line Macroinvertebrates Key 

Monitoring  Information
EPA Volunteer Monitoring Website
Volunteer Monitoring Manual
Volunteer Stream Monitoring: A Methods Manual
Volunteer Estuary Monitoring: A Methods Manual 
Quality Control and Quality Assurance in Monitoring
Water Quality Assessment Tools
National Directory of Volunteer Monitoring Programs
Chlorophyll a, Microcystin Analysis

USGS Data

Pennsylvania Current and Historical Water Data Online 

Back to Main Watershed Page

*****************************

*****************************************

For More information about the Water Research Center, 
please contact:

 Attn: Mr. Brian Oram, Professional Geologist (PG)
Water Research Center
B.F. Environmental Consultants Inc.
15 Hillcrest Drive
Dallas, PA 18612

Visit Our Online Blog- My 2 cents - Ok May a Quarter

Titled:  Pennsylvania Environmental Solutions

water testing kits, water research laboratory, drinking water laboratory
Webmaster

Home | Technology Outreach Program |  Drinking Water Help Guides | Contact Us
 Available Test Parameters   
 Research Interests, Funded Research and Applied Research 
  Homeowner Information Water Testing
 Environmental Topics - Infiltration, Permeability, Soil Science, 
 Wellhead Protection, Groundwater, Watersheds
 PowerPoint Presentations


Continuing Education Courses - OSHA Training, Engineers, Geologists,
Sustainability, Architects, LEED Professionals

 

Watershed Monitoring, Research, Training,
Lake and Watershed Studies, Citizen Monitoring, Volunteer Monitoring Programs


 The Water Library - Pdf files on Water Issues and Topics
 Tools for Environmental Professionals, Citizens, and Students
 Field Training and Workshops in Earth Science
 Affiliations and Hot Links  

Search Our Site

Website Designed by:
Web Design Pros.net

 

eXTReMe Tracker